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NNaattuurraall  hhiissttoorryy  ooff hhyyppeerrtteennssiioonn--iinndduucceedd  rreennaall  ddaammaaggee

The association between increased pulse pressure and stroke were noted
already in the 18th century when Giovanni Battista Morgagni described
the clinic pathological characteristics of the apoplexy suffered by a in
a patient he shared with Maria Antonio Valsalva and found “his pulse
frequent, large and vehement” and further commented that the
characteristics of the pulse were not “of the least advantage” in this
condition [1]. However, afterwards and up to the first half of the 20th century
the increased blood pressure was considered an adaptive response
necessary for the perfusion of vital organs. In 1931, cardiologists discouraged
the treatment of hypertension and Hay wrote that “the greatest danger to
a man with high blood pressure lies in its discovery, because then some
fool is certain to try and reduce it” [2]. Changes in this perspective took
place about half a century ago when it was realized that high blood pressure
could be dangerous in specific situations and authoritative textbooks
of medicine stated that the treatment of hypertension should be confined
to patients who presented “chest pain or other signs of overt signs
of disease” and “other should not be treated” [3]. The term “benign”
essential hypertension was coined to define a condition that had a minor
clinical significance in contrast with the “malignant” course that was
associated with severe hypertension resulting in organ damage.
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Pathophysiology and treatment of CKD

A b s t r a c t

This review focus on the natural history of chronic renal disease associated with
hypertension and will discuss separately the renal disease hypertensive
emergencies, hypertension in association with preexisting renal disease and mild
hypertension in patients with normal kidneys. Chronic renal disease results in
profound lipid disorders, which derive largely from dysregulation of HDL and
trygliceride-rich lipoprotein metabolism. A specific mention of is made of patients
with a deficiency of LCAT and patients with abnormal variants of Apo E in relation
to the lipid-induced chronic renal damage. We discuss the pathogenetic
mechanisms involved in the hypertension-induced and dyslipidemia-induced renal
damage and the hypertension and lipid disorders resulting from renal disease.

KKeeyy  wwoorrddss:: inflammation, renin-angiotensin system, statins, renoprotection.
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Much has changed since that time and, as
stated by Moser [4], the management of hyper-
tension in the 21st century represents a major
success story in preventive medicine resting on
the demonstration that the lower the blood
pressure (BP), the better the outcome, regardless
of how it was achieved.

In recent guidelines [5] the term “malignant”
hypertension that defined severe hypertension
associated with severe retinopathy with pa-
pilledema [6] and was previously reported to occur
in 1% of hypertensive patients [7], has been
abandoned and replaced for the definition
of hypertensive crises that comprise hypertensive
emergencies, associated with acute end-organ
damage requiring immediate treatment, usually in
the Intensive Care Unit, and hypertensive urgencies,
that need correction in hours or a few days. In
hypertensive crises the reduction of blood pressure
will halt, prevent or reverse the rising levels
of azotemia.

Numerous studies have demonstrated that
the incidence of stroke and myocardial infarction is
directly related to the blood pressure levels and
recent guidelines for blood pressure control [5],
recognize the impressive reductions in cardio-
vascular morbidity and mortality obtained by
reduction in blood pressure levels [8-13]. Similar
reductions in the incidence of end-stage renal
disease (ESRD) with better blood pressure control
have not been registered [14] and beneficial effects
on renal function obtained by lowering blood
pressure in patients with mild to moderate essential
hypertension remain controversial [15]. Never-
theless, the association between ESRD with severe
hypertension has been amply documented.
Landmark studies have shown that that the risk
of ESRD was nearly 50 times higher if systolic blood
pressure was higher than 200 mm Hg than if it
was 120 mm Hg [16] and serum creatinine values
are 3 times higher in patients with diastolic blood
pressue higher than 115 mm Hg with respect to
those with 90 mm Hg [17]. In addition, there is also
compelling evidence from interventional trials that
in patients with mild to moderate renal disease,
there is a direct relationship between the degree
of reduction in blood pressure and the retardation
of renal functional loss. 

Therefore the natural history of chronic kidney
disease (CKD) resulting from hypertension will be
discussed in three different clinical situations:
hypertensive crises, hypertension in association
with co-existing renal disease and hypertension in
patients without evidence of renal disease.

HHyyppeerrtteennssiivvee  ccrriisseess

Severe hypertension, usually with levels of
≥ 180/120 mm Hg associated with or without acute

end-organ damage (chest pain, myocardial
infarction, cerebrovascular accident, hypertensive
encephalopathy, papiledema, uremia, hematuria)
may occur in patients not previously known to be
hypertensives and in patients with primary
(essential) or secondary hypertension. The majority
of the cases of secondary hypertension are
associated with renal parenchymal (glomerular or
tubulointerstitial) or renovascular disease. Renal
functional impairment is usually present and
the characteristics of the urinary sediment and
the degree of proteinuria depend on the preexisting
renal disease. 

The pathophysiology of the renal injury in
hypertensive crises results from the mechanical
stress of the increased pressure on the vessel wall.
The mechanical injury causes endothelial damage
and inflammation with local activation of mediators
of inflammation and components of the coagulation
cascade. The old observation that patients with
chronic hypertension may tolerate higher levels
of blood pressure than previously normotensive
individuals or patients with mild hypertension was
attributed to the relative protection offered by
the arterial wall hypertrophy that is commonly
associated with long-standing hypertension [7]. The
renal renin-angiotensin system (RAS) is activated
in most hypertensive crises and was the rule in
the previously designated “malignant” hyper-
tension. The increased RAS activity not only induces
a generalized vaso-constriction but, in addition,
stimulates a large number of proinflammatory
cytokines and exacerbates oxidative stress and local
inflammation, all of which contribute to amplify
the local damage. 

Blood pressure control is mandatory in
hypertensive crises. Before effective antihypertensive
drug therapy was available the mortality of
malignant hypertension was 40-80% in one year
[18] and uremia accounted for 50% of the deaths
[7]. Therapeutic advances have improved the
prognosis but hypertensive crises remain a serious
condition with a 5-year survival rate of only 80%
[19]. Despite the widespread availability of dialysis,
renal failure remains and important cause of
death [20].

Clinical considerations: The treatment of mali-
gnant hypertension is outside the limits of this
revision. From the view point of renal functional
recovery is worth emphasizing the need to control
the blood pressure and, in relation to prevent
progression of CKD, the need to have a long-term
inhibition of the renin angiotensin system (RAS)
activity. There are no specific studies addressing
the long-term effects of RAS blockade after
hypertensive emergencies but it is reasonable to
assume its beneficial effects in the management
of hypertension that has previously resulted in renal
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damage. A word of caution is necessary with
respect to the use of angiotensin converting
enzyme inhibition (ACEi) and or angiotensin
receptor type 1 blockade (ARBs) in the early stages
of hypertensive crises since it may result in further
impairment of renal function because the sup-
pression of angiotensin II (Ang II)-induced
vasoconstriction it may reduce renal blood flow,
especially in cases or renal artery stenosis.

HHyyppeerrtteennssiioonn  iinn  aassssoocciiaattiioonn  wwiitthh  rreennaall  ddiisseeaassee

The incidence of ESRD associated with
hypertension has increased steadily in the past
decades despite a reduction in the mortality from
cardiovascular disease attributed to the better
control of the blood pressure in the population. At
the present time hypertension represents
the second cause of ESRD after diabetes [21] and
plays a contributory role in the CKD caused by
diabetes. Hypertension is present in 83%
of the patients with CKD and 95% of those with
ESRD and is even more frequent and severe in
African Americans, males, obese and elderly
individuals [22]. Increased prevalence of hyper-
tension is associated with decreasing estimates
of glomerular filtration rate (GFR) at intervals of
10 ml/min/1.73 m2, irrespective of age, obesity and
microalbuminuria [23]. In children, the prevalence
of hypertension in CKD ranges from 20 to 80%
depending on the severity of renal insufficiency and
the underlying renal disease [24].

The association between CKD and hypertension
is also reflected in population studies that found
a strong association between the prevalence
of hypertension and ESRD [25] and prospective
studies that found that every 20 mm Hg increase
in diastolic pressure even in the range of the normal
blood pressure range resulted in a twofold increase
in risk of developing an increased serum creatinine
[26]. The relationship between the blood pressure
levels and the rate of GFR reduction has also been
noted in children [27].

The causal relationship between hypertension
and CKD progression has been strongly suggested
by a large number of observational [8, 16, 26,
28-31], and interventional studies [32-36] particularly
in patients with chronic renal disease [37-41]
including type I diabetics [42, 43], type II diabetics
[44] and non-diabetic patients [40, 45-47].

Several studies have also shown that there is
a relationship between the blood pressure reduction
achieved by treatment and the reduction in the rate
of progression of renal insufficiency [48] even within
the normal blood pressure range [28, 49].
Prospective analyses also have determined that
within the normal range, higher blood pressure
levels are associated with a higher incidence
of proteinuria [50].

Taken together, these studies are compelling
evidence that not only from he point of view
of cardiovascular disease but also from
the perspective of renal disease, the blood pressure
levels that define hypertension as a pathologic
condition need to be lowered, as it is now
recognized by the guidelines of the Joint National
Commmitte in the US (JNC7) [51] and the European
Hypertension Society [52] that blood pressure
targets should be < 130/80 mm Hg in adults. In
children, the presently recommended blood pressure
levels should be < 90th percentile of normal values
adjusted for age, gender, and height [53].

The beneficial effects of blood pressure reduction
are more evident in proteinuric patients, especially
in those with severe proteinuria (> 2 g/day) [53-57]
but likely extend to lower levels of proteinuria. In
an analysis of the data collected in the AASK trial,
the magnitude of the reduction in proteinuria in
the first 6 month predicted subsequent progression
of CKD and this effect extended to participants with
baseline urinary protein levels of less than
300 mg/day [58]. 

Various components of blood pressure have been
evaluated as predictors of risk of progression
of CKD. While all of them (systolic, diastolic and
mean blood pressure) and even the lack of night
reduction in blood pressure levels (non-dippers)
have been associated with CKD progression [59-61],
prospective studies have found that systolic blood
pressure is the most useful clinical measurement
since the others offer no added advantage [62].

A number of studies have addressed the question
of the type of antihypertensive medication that
would result in better renal outcomes in patients
with diabetes. Angiotensin converting enzyme
inhibition (ACEi) and ARBs are intuitively drugs
of choice because of their potential of not only
control the blood pressure but also reduce
the non-hemodynamic actions of Ang II. In diabetic
nephropathy, type I and type II, a large meta-analysis
of 100 randomized and non randomized trials
published in 1993 [63] concluded that lowering
of the blood pressure by any drug therapy slowed
the progression of renal disease but ACE inhibition
offered benefits independent of blood pressure
reduction. A prospective randomized trial of 409
patients with type I diabetes confirmed the beneficial
effects of ACE inhibition in relation to doubling
the serum creatinine [64] and more recently,
the beneficial effects were also observed in diabetic
patients with microalbuminuria and normal blood
pressure [65-69]. In two recent prospective
randomized trials of patients followed for a mean
of 3.4 years [70] and 2.6 years [71] the treatment
of diabetic patients with ARBs resulted in a 25 to 33%
reduction in the doubling of serum creatinine and
28 to 23% reduction in ESRD, respectively.
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In non diabetic patients, Zuchelli et al. [40] found
that after 3 years of treatment, less patients
receiving captopril reached ESRD than patients
receiving a calcium channel blocker and similar
results were obtained with enalapril vs. a β-blocker
by Hannedouche et al. [72].

Recently, a new oral renin inhibitor, Aliskiren, has
been approved for the treatment of hypertension.
This drug has antihypertensive and renoprotective
effects in the streptozotocin-diabetic TG (mRen-2)
27 rats, reduce prorenin expression in the glomeruli,
tubule and cortical vessels and may block
prorenin-induced angiotensin generation [73]. In
humans, Aliskiren induce a renal blood flow and
natriuresis increment that exceeds that observed
with ACEi and ARBs [74]. Reduction in plasma rennin
activity (PRA) is not modified by the concomitant
administration of other antihypertensive drugs and
diuretics and the blood pressure lowering effects
persist 2-3 weeks after stopping the drug [75]. In
a recent double-blind, randomized study, Aliskiren
(150 mg daily for 3 months follow by 300 mg daily
for 3 months) induced a modest reduction in blood
pressure and an impressive reduction in
the proteinuria, as determined by the albu-
min-creatinine urinary ratio, in patients receiving
losartan, indicating the potential for beneficial
effects over and above those obtained with ARBs
alone [76].

Despite the enormous efforts devoted to
highlight the need of blood pressure treatment,
the progress made has been mostly evident so far
in the public consciousness of hypertension as
a public health problem and much remains to be
achieved in relation to blood pressure control. In
the study of Serafidis et al. of the patients in
the KEEP investigation [77] awareness and
the prescription of treatment were high (80.2
and 70.0%, respectively), but the blood pressure
control (< 130/80 mm Hg) was only 13.2%, and poor
control was particularly prevalent in obese, African
Americans and males.

Clinical considerations: Epidemiological and
clinical studies have consistently shown that
hypertension is associated with CKD and when
present in these patients leads to progressive renal
failure. The causal association of high blood
pressure and CKD progression is very strong when
the blood pressures are high (stages 11 to IV) and
when the hypertension is present in association
with CKD of any etiology. The target blood pressure
levels should be < 130/80 and reduction in
proteinuria is a major goal in the treatment
of hypertensive patients with CKD. Two or
3 antihypertensive drugs are required to treat 
blood pressure in patients with CKD and one
of these drugs should be directed to suppress
the renin-angiotensin system. A frequently useful

combination includes a thiazide diuretic and ACEi
or ARB and future studies may confirm the findings
in recent studies that indicate that oral renin
inhibition, alone or in combination with ARBs may
be beneficial in diabetic nephropathy. 

The role of diuretic therapy and dietary salt
restriction in the management of hypertension in
patients with CKD is beyond the scope of the
present revision.

HHyyppeerrtteennssiioonn  aass  aa pprriimmaarryy  ccaauussee  ooff cchhrroonniicc  
kkiiddnneeyy  ddiisseeaassee

The role played by the kidney in the patho-
physiology of salt excretion in the development
of increased blood pressure levels has been
extensively investigated and the existence
of hypertension in a large number of conditions,
both experimental and clinical, that have in
common a tendency to salt retention give solid
ground to the causal relationship between kidney
disease and hypertension [reviewed in 78]. Precisely
in the fact that renal disease causes hypertension
resides the difficulty in establishing if benign
hypertension causes CKD because it is difficult, or
perhaps impossible, in the myriad of studies
available in the literature to identify which patients
followed to specific endpoints (usually doubling
of serum creatinine or ESRD) had preexisting renal
functional impairment.

Perneger et al. [79] has lucidly defined the
difference between conditions that initiate and
conditions that promote or influence the pro-
gression to CKD. In the case of hypertension,
the critical data to address this issue may not be
derived from observational studies that would only
record an association between hypertension and
renal failure. Longitudinal studies by Shulman et al.
[35] and Klag et al. [80] suggested that non-
malignant hypertension may lead to CKD but these
studies include a significant number of African
American patients that are known to have
susceptibility to hypertension-associated renal
damage and, more important, the existence
of baseline underlying renal disease was not
excluded. Iseki et al. [81] found that in their study
of the risk of developing CKD in a mass screening
cohort that proteinuria, elevated serum and higher
baseline blood pressure progress more frequently
to ESRD; however, when the data was adjusted for
baseline renal dysfunction, the relationship between
blood pressure and ESRD was abolished.

The potential role of hypertension as initiator or
accelerate the progression of CKD was examined
by Hsu [82]. In a critical review of interventional,
randomised, controlled trials, he attempted to
answer the question of whether drug treatment
of non-malignant hypertension reduces the in-
cidence of renal dysfunction. He concluded that
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“the relative risk (treated patients vs. controls)
of developing renal dysfunction was 0.97 (95%
confidence interval 0.78-1.21, p = 0.77) and that
a 25% or more true protective effect of anti-
hypertensive drugs is unlikely” and emphasized
that the trials analyzed did not rigorously exclude
patients with renal disease or reduced GFR, which
would render more strength to his conclusion [15].

The previous considerations beg the question
of what is the definition of hypertension-induced
nephrosclerosis (HTN-NS) and its role as a cause
of CKD. One should first consider that HTN-NS is
recorded as the second most common causes
of ESRD [21, 83]. It would appear that the diagnosis
of hypertensive nephrosclerosis has replaced
the previously used “chronic glomerulonephritis”
to classify patients in whom a diagnosis for CKD is
not apparent. Zarif et al. [84] showed that if strict
clinical criteria are used, the prevalence of HTN-NS
was reduced from 37% to less than 13% and
possibly as low as 1.5%. However, as indicated by
Marcantoni and Fogo [85], the strict clinical criteria
of Schelesinger [86] which include a family history
of hypertension, onset of hypertension between
ages 25-45 years, target organ damage other than
kidney (hypertensive retinopathy, left ventricular
hypertrophy), no evidence of primary renal disease,
minimal proteinuria and normal renal function, are
not present in all patients with HTN-NS. 

Clinical considerations: Clinicians should be
aware of the difficulties of establishing a diagnosis
of hypertensive renal disease. While biopsy
confirmation is not always possible or even
indicated, a specific notation of the clinical criteria
upon which the diagnosis is based made should be
made in the history. Since aggressive hypertension
control with blood pressure target levels that reduce
cardiovascular complications is a central therapeutic
strategy in essential hypertension, is of little
practical importance to determine if a higher blood
pressure threshold is adequate for renal protection.
Proteinuria and renal function should be closely
followed. While inhibition of the angiotensin system
is not mandatory in patients with uncomplicated
essential hypertension, it should be strongly
considered when renal functional deterioration or
significant proteinuria are present. 

TThhee  rreennaall  lleessiioonn  rreessuullttiinngg  ffrroomm  hhyyppeerrtteennssiioonn

Two distinct morphological types of kidney injury
result from hypertension and they may represent
the ends of a spectrum of renal damage induced
by increased blood pressure.

MMaalliiggnnaanntt  nneepphhrroosscclleerroossiiss

The term malignant nephrosclerosis [87] is used
to classify renal lesions associated with severe
hypertension include proliferative endarteritis,

fibrinoid necrosis with hyaline thrombi formation.
The intimal hyperplasia results in concentric layers
of collagen, designated with the term of onion skin.
Prominence of the juxtaglomerular apparatus,
interstitial inflammation and tubular atrophy may
be present and vascular changes in the kidney
correlate with the development of renal failure [7].
The natural (untreated) history of this type of injury
is rapid progression to ESRD.

NNeeffrroosscclleerroossiiss

Typical lesions of HTN-NS include arterial medial
thickening, hyaline deposits and variable intimal
fibrosis. Glomerular lesions are segmental or global
sclerosis. Since biopsies are not usually done to
diagnose hypertensive nephrosclerosis the available
studies on progression are usually retrospective and
depend on a baseline clinical diagnosis. In studies
by Fogo et al. that compared the agreement
between the clinical and the pathological diagnosis
[88] they found that concordance between
the clinical and the biopsy diagnosis in hypertensive
nephrosclerosis is high in Africa Americans but it
occurs in only 48% of the Caucasian patients.
Therefore the accuracy of the clinical diagnosis is
related to genetic susceptibility of HTN-NS. 

With the discussed limitations in mind, it is
reasonable to suggest that non-malignant
nephrosclerosis progress to ESRD, albeit at
a significantly slower pace than its malignant
counterpart [89-92].

MMeecchhaanniissmmss  ooff rreennaall  ddaammaaggee  iinn  hhyyppeerrtteennssiioonn

Figure 1 shows the interrelation between hemo-
dynamic factors and humoral factors involved in
the increment in extracelluar matrix in the renal
damage induced by hypertension and the
physiopathological mechanisms that are enga-ged
by these factors. 

LLoossss  ooff aauuttoorreegguullaattiioonn

Two decades ago, Brenner et al. [93] described
the role of hyperfiltration and glomerular
hypertension as a common final pathway in
the progression of renal damage. Increased
glomerular capillary hydraulic pressure [94] and
glomerular hypertrophy [95] combine to
compromise the resistance to physical stretch
probably by modifying the structural support
provided by the podocyte [96, 97] and in
association with non-hemodynamic factors, cause
glomerular sclerosis. The glomerular capillary
pressure (PGC) is the net result of the balance
between the afferent and efferent arteriolar
resistances and it may be increased in the absence
of systemic hypertension in certain conditions like
early diabetes, in which there is preglomerular
vasodilatation and the reduction in afferent
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resistance exceeds the reduction in efferent
arteriolar resistance. In relation to hypertension-
induced renal damage, the glome-rular
microvasculature is protected from systemic blood
pressure increments by a phy-siological response
of preglomerular asocon-striction that is
proportional to the degree of hypertension. 

Bidani and Griffin [98, 99] have elegantly
described the pathophysiological consequences
of hypertension in kidneys with preserved and
impaired autoregulation. Patients with mild-
to-moderate hypertension, who have preserved
autoregulation of the glomerular blood flow, may
withstand substantial increments in blood pressure
without significant renal damage. In these
circumstances the effects of a reduction in blood
pressure (that was not in any case transmitted to
the glomeruli) would not be expected to result in
a proportional improvement in renal function. In
contrast, if the blood pressure increments exceed
the limits of the autoregulatory response, the renal
damage occurs rapidly, as is the case in
hypertensive crises, and the goal in treatment
would be to lower the blood pressure to the range
in which the autoregulation (assuming that is

maintained within the physiological range in these
patients) may offer protection to the glomerular
vasculature. A different situation is that of
experimental and clinical conditions in which
impaired autoregulation is present. Such is the case
in the late course of the experimental model renal
ablation with extensive renal mass reduction and
in diabetic nephropathy and in other nephropathies:
In these circumstances there would be a linear
relationship between the systemic blood pressure
levels and the progression of renal damage and,
consequently, the reduction of blood pressure is
linearly related to the protection it may confer on
the development of CKD. In these conditions,
the lesser blood pressure the better protection. The
adverse effects of impaired autoregulation are
characteristic of conditions that have a vasodilated
vascular bed; if the vascular bed is already
vasoconstricted and autoregulation lost, the reduction
of systemic blood pressure may result in a critical
reduction of blood flow and glomerular filtration with
ischemic downstream tubulointer-stitial injury [100].

The most impressive demonstration of the role
of impaired autoregulation in the development
of chronic renal damage has been obtained in

FFiigguurree 11..  Hypertension-induced chronic renal damage
The increment in extracellular matrix (ECM) results from the interplay of hemodynamic factors and humoral factors
as described in the text
PGC – glomerular capillary pressure, SNGFR – single nephron glomerular filtration rate, AII – angiotensin II, 
AT-1 – edotyhelin 1, MCP1 – macrophage chemotactic factor 1, NFκB – nuclear factor kappa B, TGF-β – transforming
growth factorβ, PAI-1 – plasminogen activator inhibitor 1, EMT – epithelial mesenchymal transdifferentiation, ROS
– reactive oxygen species

Pressure
Stretch
↑ PGC
↑ SNGFR

Podocyte injury

↑ TGF-β
↑ TIMP-1, TIMP-2

↑ PAI-1
EMT

ROS generation
Loss peritubular

capillaries

All
Aldosterone
ET-1
MCP-1
NFκB
RANTES
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the model of 5/6 nephrectomy when blood pressure
is evaluated by radiotelemetry. These studies
showed a relationship between blood pressure
levels and the progressive glomerulosclerosis
[101, 102]. The administration of calcium channel
blockers has adverse effects in this experimental
model, with further reduction of the threshold in
which blood pressure induces glomerulosclerosis;
this finding has been attributed to the dependence
of the autoregulatory vascular response on
the voltage-gated calcium channels [103]. This
characteristic may be responsable for the worse
performance of calcium blockers in renal protection
studies of diabetic nephropathy [71].

Herrera-Acosta et al., in a series of investigations
[104-106] demonstrated the role of tubulo-
interstitial inflammation in the impairment
of autoregulation of glomerular flow and thereby
offered insight on the mechanisms linking
tublointerstitial injury and glomerular sclerosis. As
will be discussed later, when there is severe
tubulointerstitial infla-mmation, a preglomerular
arteriolar remodeling takes place, autoregulation
is lost and there is a linear relationship between
systemic and glomerular capillary pressure. If
the tubu-lointerstitial inflammatory infiltrate is
reduced by mycophenolate mofetil, the
arteriolopathy and autoregulatory capacity
of the glomerular circulation is restored.
Interestingly, the admi-nistration of this drug
ameliorates the renal disease progression in
the renal ablation model [107, 108].

CCyyttookkiinneess  aanndd  ggrroowwtthh  ffaaccttoorrss

The participation of non-hemodynamic factors
involved in the renal injury resulting from
hypertension was demonstrated by careful studies
in which determinations of single nephron GFR,
glomerular pressure and flow were investigated and
the same micropunctured nephrons were identified
and examined for histological changes at the time
of sacrifice. In these studies [109], there was no
correlation between the severity of glomerular
sclerosis and the glomerular hemodynamic
variables. In contrast, correlations were detected
between gomerulosclerosis and glomerular
hypertrophy several experimental models [110, 111].
Subsequently, Fogo [112] listed a number of human
and animal models in which there was also an
association between glomerular hypertrophy and
sclerosis and reviewed how hypertrophic stimuli,
such as high protein diet, high salt diet, growth
hormone, insulin growth factor (IGF), androgens
and glucocorticoids, promote renal hypertrophy and
glomerular sclerosis and reviewed the therapeutic
strategies that inhibit renal hypertrophy and
meliorate glomerulosclerosis. In diabetes has long
been recognized that increased renal and

glomerular size precedes the development of
sclerosis.

Renal hypertrophy is not only the result
of increased work load since the glomerular
hypertrophy precedes the increase in single
nephron GFR in the remnant kidney model [113].
Growth factors and cytokines may be involved in
the development of glomerular sclerosis associated
with hypertrophy; among them, IGF, platelet-derived
growth factor (PDGF), transforming growth 
factor β (TGF-β), Ang II, and interleukins (IL) may
be involved in this pathologic response depending
on the experimental model and the characteristics
of the host [112]. Resident glomerular cells produce
a large number of these compounds; notably
vascular endothelial growth (VEGF), PDGF, nitric
oxide (NO), endothelin and plasminogen
activator-inhibitor 1 (PAI-1) by endothelial cells, and
TGF-β, basic fibroblastic growth factor (bFGF) by
mesangial cells. Increased matrix production by
mesangial cells and structural dislocations 
in the podocyte structure contribute to the
development of sclerosis. Modulation in the
extracellular matrix turnover by PAI-1, epit-
helial-mesenchymal transition by TGF-β and
modification of proinflamatory/profibrotic genes
involved in the sclerosis process and diabetic injury
by peroxisome proliferator-activated receptor γ
(PPAR-γ) [114] are likely involved in the very complex
mechanisms triggered and sustained by growth
factors and cytokines in hypertensive chronic renal
damage.

RReennaall  hhyyppooxxiiaa

Chronic hypoxia is a mechanism for the
development of chronic renal damage [115] that is
likely engaged in hypertension. Chronic
tubulointerstitial hypoxia is the result of several
factors present in hypertensive nephropathy. Among
them, a reduction in blood flow to nephrons in
regions distal to obsolescent glomeruli, an imbalance
of vasoactive substances in favor of vasoconstriction
resulting from interstitial inflammation and the loss
of peritubular capillaries associated with the
development of fibrosis. Superoxide production
induced by Ang II is known to result in
proinflammatory and profibrogenic mediators, as
will be discussed later. Not unexpectedly, blockade
of the RAS improves peritubular capillary blood flow
and tissue oxygenation in healthy rats [116] and in
the remnant kidney [117]. The effects of hypoxia
and oxidative stress may be present in an early
stage in the kidney in conditions such as diabetes
that later develop hypertension and structural
kidney damage, as has been demonstrated
streptozotocin-induced diabetes with blood oxygen
level dependent (BOLD)-magnetic resonance
imaging [118].
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Another effect resulting from increased oxidative
stress is the decrease in NO availability which is
a protective factor of vessel integrity and
antagonizes Ang II hemodynamic [119] and
non-hemodynamic effects [120]. Reduction in NO
facilitates vascular remodeling [121] which promotes
tissue ischemia.

RReennaall  aannggiiootteennssiinn  ssyysstteemm

The renal RAS plays an important role in
the hypertension-induced chronic renal damage. It
is important to realize that all the components
of the RAS are present in the kidney [122] and its
activity is not modulated by the same influences
that modify plasma Ang II levels; for instance
plasma expansion reduces plasma AII levels but
does not modify RAS [123, 124]. Furthermore, in
salt-sensitive hypertension the severity of hyper-
tension is negatively correlated with plasma AII
levels and positively correlated with renal AII 
levels [125].

Increased renal Ang II has been demonstrated
in all experimental models of salt sensitive
hypertension. Proximal tubular cells as well as
infiltrating cells express Ang II [126-130] and
the renal content [131, 132] and the interstitial
concentration of AII are increased in association
with renal inflammation in experimental hyper-
tension [125, 133]. 

Angiotensin II induces oxidative stress.
Generation of superoxide by NAD(P)H oxidase is
stimulated by AII via angiotensin type I receptors
[134-136]. Angiotensin is also a well recognized
factor in the inflammatory and profibrotic effects
of hypertension [137] and its effects are in large
measure mediated by the stimulation of the
proinflammatory transcription such as nuclear factor
kappa B (NFκB) which is a central mechanism in
the stimulation of the angiotensin-induced cytokine
stimulation [138, 139], possibly including the
downstream stimulation of connective tissue
growth factor [140]. In addition, as recently shown
by Carvajal et al. [141], Ang II activates the Smad
pathway during the profibrotic process of epithelial
mesenchymal trans differentiation. Given the key
role that is played by angiotensin in the
proinflammatory and profibrotic damage in
the kidney, is not unexpected that inhibition
of the renal angiotensin system by ACE inibitors
and ARBs hypertensive renal damage as discussed
earlier.

AAllddoosstteerroonnee

Hyperaldosteronism is present in the renal
remnant model in association with renal failure,
hypertension, proteinuria and nephrosclerosis. Since
the administration of exogenous aldosterone in rats
with renal ablation treated with angiotensin

blockers reinstated the renal damage [142], there
appears to be a pathogenetic role of aldosterone
in this model. However the beneficial effects
of aldosterone blockade on the remnant kidney are
relatively modest [143].

Aldosterone participation in the renal damage
induced by hypertension may result from its ability
to stimulate synthesis of sodium channels and
increased influx of sodium in vascular smooth
muscle cells (VSMC) [144] and by promoting
hypertrophy of these cells by enhancing AII receptor
binding [145]. In addition, aldosterone inhibits NO
synthesis [146].

Aldosterone induces post-transcriptional
enhancement of TGF-β [147], an effect that likely
explains the manner in which aldosterone
antagonism results in reduction of collagen content
independently of the blood pressure levels
[148, 149].

While the clinical studies of the potentially
independent beneficial effects of aldosterone
blockade are related to endothelial dysfunction and
heart failure [150-152], in stroke-prone hypertensive
rats, aldosterone antagonists reduces proteinuria
and nephrosclerosis [153] independently of changes
in blood pressure [154]. 

The effects of aldosterone promoting chronic
renal damage are likely mediated by intrarenal
inflammation since the beneficial effects of
aldosterone aldosterone blockade in the mineralo-
coricoid/salt hypertension is associated with
a reduction of the inflammatory reactivity [155].

IInnttrraarreennaall  iinnffllaammmmaattiioonn

Renal inflammation plays a role in all modalities
of progressive renal damage [156] and CKD
resulting from hypertension is no exception. In all
the experimental models in which it has been
tested, the reduction in the tubulointerstitial
infiltration of imunocompetent cells is associated
with an amelioration of hypertension or prevention
of the salt-induced increment in blood pressure
[78]. The renal inflammatory reactivity is closely
linked with both oxidative stress and with
intrarenal angiotensin system [157]. Infiltrating
cells generate reactive oxygen species and, in turn,
oxidative stress and superoxide estimulate
the proinflammatory transcription factors, most
notably NFκB [158], thereby promoting further
local inflammatory reactivity. As discussed earlier,
Ang II generates superoxide and directly
stimulates NFκB. The inflammatory infiltration
increases local Ang II, as shown by an increment
in the number of cells expressing AII [126-128] and
the increment in renal content and interstitial fluid
concentration of AII which is reduced by
the immunosuppressive anti-inflammatory
treatment [125, 131, 132].
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The reduction in tubulointerstitial inflammation
has been shown to reduce or prevent the afferent
arteriolar remodeling that is present in experimental
models of hypertension [104-106]. The prevention
of arteriolar remodeling is important because
the remodeling of glomerular arterioles impairs
the autoregulatory responses of afferent arterioles
which, as described earlier, are critical to protect
the glomerular capillaries from the pressure and
stretch modifications that otherwise result from
elevations of systemic blood pressure.

PPrrootteeiinnuurriiaa

Proteinuria is a risk factor and a marker of CKD
and one of the most important elements to control
in any strategy designed to retard progression
of renal damage. As discussed earlier, the beneficial
effects of RAS inhibition are more, and perhaps only
evident in patients with important proteinuria in
whom treatment with ACEi, ARBs or both result in
a reduction in urinary protein excretion. However,
proteinuria is probably of minor importance in
hypertensive nephropathy. In fact, the absence
of significant proteinuria is an important clinical
characteristic of essential hypertension. Micro-
albuminuria (20-200 mg/day) has been proposed
as a marker of generalized endothelial dysfunction
and is present in probably 15% of the patients with
essential hypertension but the prognostic
significance of this finding in this patients is
unknown at the present time [87].

Dislipidemia in the pathophisiology of chronic
kidney disease

An association between lipid abnormalities and
the pathogenesis of kidney disease was first
suggested by Virchow in 1860 when he described
extensive fatty deposits in renal tissue obtained by
autopsy in a patient with Bright’s disease [159].
Chronic kidney disease results in profound lipid
disorders, which derive largely from dysregulation
of high-density lipoprotein (HDL) and try-
gliceride-rich lipoprotein metabolism [160].
Characteristically, a moderate increase in apo
B-containing lipoproteins of very low and low
densities, and reduced levels and abnormal
composition of apolipoprotein A-containing
lipoproteins (Apo A) of high densities are present.
Additionally, triglyceride enrichment of apo
B-containing lipids (Apo B) is an important
abnormality that correlates with progression
of kidney disease. The presence of small dense,
triglyceride-enriched particles associated with
reduced high density lipoprotein is also a major risk
factor involved in cardiovascular disease [161-163].
In both, type 1 and type 2 diabetes, the dyslipidemia
is not just secondary to kidney disease, since an
unfavorable lipid profile is present at early stages

of microalbuminuria. Higher levels of plasma
triglycerides, lower plasma HDL-cholesterol are
found in hypertensive diabetic patients with
increased sodium-lithium countertransport when
GFR is normal [164]. 

Two primary lipid disorders have been associated
with renal disease. Patients with a deficiency
of lecithin-cholesterol acetyltransferase (LCAT)
develop large lipid-laden lipoproteins, glomerular
lipid deposits and eventually renal failure associated
with glomerulosclerosis. Abnormalities in apo-
liprotein E-containing lipoproteins (Apo E) have been
described with a distinct form of progressive 
kidney disease characterized by proteinuria,
type III hyperlipoproteinemia, lipoprotein thrombi
in glomeruli, and an apolipoprotein E variant, named
ApoE Sendai. (165, 166). The functions of Apo E
phenotypes are considered relevant not only to
the pathogenesis of hyperlipidemia and glomerular
disease, but also to atherosclerosis [167].

The following section, will be focused on
the association between the lipid profile and
the progression of CKD, mechanisms of dyslipi-
demia-induced renal damage and lipid disorders
resulting from renal disease and the effects
of statins on renal disease progression.

AAssssoocciiaattiioonn  bbeettwweeeenn  ppllaassmmaa  lliippiidd  pprrooffiillee  
aanndd  pprrooggrreessssiioonn  ooff cchhrroonniicc  kkiiddnneeyy  ddiisseeaassee

It has been suggested that the renal
dyslipoproteinemia of renal insufficiency contributes
to the progression of glomerular and tubular lesions
[160, 161, 168]. Samuelsson et al. [169] reported that
in a study of 73 adult non-diabetic patients with
primary chronic renal disease, total cholesterol,
low-density lipoprotein (LDL) cholesterol, and Apo B
were associated with a more rapid decline of in renal
function. Subsequently, in a separate study, the same
group described a strong association between
the plasma concentration of complex, triglyceride-rich
Apo B-containing lipoproteins and the rate of
progression of kidney disease [170]. Also, in the study
of Hovind et al. [171], in 92 (31%) out of 301 patients
with nephropathy associated with type 1 diabetes,
remission was associated to a lower serum
cholesterol, mean arterial pressure, and albuminuria.

Similar associations between dyslipidemia and
CKD were found in a post hoc analysis
of the Reductions of End Points in type 2 Diabetes
with the Angiotensin II antagonist Losartan RENAAL
study, that reported that increased total
cholesterol, LDL cholesterol, and triglycerides were
associated with increased risk of progression to
ends stage kidney disease [172]. 

In an study of risk factors for diabetic nephro-
pathy in 574 patients type 2 diabetes mellitus,
multiple logistic regression analysis indicated that
levels of total cholesterol, were among the main
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factors associated with the decreased in renal
function and with the increase of albuminuria [173].
In addition, it also has been shown that patients
with low HDL and hypertriglyceridemia have
a higher risk of having a loss of renal function [174].
Similarly, low HDL cholesterol was found an
independent predictor of a decline in GFR in
patients with kidney disease, although triglycerides
levels were not measured [168]. Hiper-
tryglyceridemia has also been identified as an
independent risk factor for progression of IgA
nephropathy [175].

Apo E genetic variation has been implicated in
diabetic nephropathy. In a prospective follow-up
of the Atherosclerosis Risk in Communities (ARIC),
the ε2 allele increased and ε4 decreased risk of CKD
progression independently of age, gender and race
[176]. The ε2 allele has been associated with
type III hyperlipoproteinemia and increased levels
of triglycerides due to delayed clearance, both
associated with kidney disease [177]. This finding
has not been confirmed by others investigators
[178]. 

Unexpectedly, it has recently been reported
the association of a higher apoA-IV levels with
progression of kidney disease [178]. Normally,
apoA-IV removes cholesterol from peripheral cells
and directs it to the liver for metabolism.
Furthermore, apoA-IV has antioxidative properties,
and therefore should slower progression of CKD.
The authors suggested that perhaps apoA-IV is not
fully functional or that high levels reflect an aspect
of renal dysfunction that is not reflected in
reduction in GFR.

Finally, others researchers have found no relation
of dyslipidemia and progression of kidney disease
[179, 180]. Size of the sampled population,
differences in inclusion criteria or in the definition
of the progression end point might explain these
discrepancies.

MMeecchhaanniissmmss  ooff ddyysslliippiiddeemmiiaa--iinndduucceedd  
rreennaall  ddaammaaggee

DDyysslliippiiddeemmiiaa--iinndduucceedd  ooxxiiddaattiivvee  ssttrreessss

Several lines of evidence indicate that oxidant
stress is a pathogenic factor in lipid induced kidney
disease. The presence of lipoproteins modified by
oxidation has been demonstrated in focal
segmental glomerulosclerosis in rats and humans.
Lee et al. [181] have demonstrated that rats with
focal segmental glomerulosclerosis and dietary
hypercholesterolemia showed significantly greater
susceptibility of plasma very-low density lipoprotein
(VLDL) and LDL to in vitro oxidation and increased
renal cortical malondialdehyde (MDA), suggesting
that hypercholesterolemia could make lipoproteins
more susceptible to oxidation. These findings have
also been documented by others [182]. Lee and Kim

[183] demonstrated that oxidized-LDL (ox-LDL) is
present in human kidney biopsies in mesangial
areas and in the lesions of glomerulosclerosis. The
presence of ox-LDL and oxidized-Lp (a) contribute
to inflammation by stimulating O2

– formation, and
induce apoptotic cell death in the vascular wall and
in the glomerulus [184].

The mechanisms leading to oxidative modification
of proteins and lipoproteins have not been entirely
elucidated. Scheuer et al. [185] have suggested that
the increased generation of reactive oxygen species
(ROS) is primarily the result from an elevated
xanthine oxidase activity. In their study, hyper-
lipidemia was induced in uninephrectomized rats
without preexisting glomerular disease and in those
with mesangioproliferative glomerulonephritis.
Hyperlipidemia resulted in a rise in glomerular and
tubulointersticial generation of ROS. Oxygen radicals
were mainly generated by enhanced xanthine
oxidoreductase, which rose during hyperlipidemia;
concurrently, glomerulosclerosis and chronic tubular
interstitial injury were associated with hyperlipidemia
which also accelerated tubulointerstitial injury in rats
with glomerulonephritis.

Triglyceride-rich lipoproteins, LDL, and ox-LDL
may induce mesangial cell proliferation and injury
in patients with mesangial proliferative glome-
rulonephritis. Nishida et al. [186] have reported
that VLDL, intermediate-density lipoprotein (IDL)
and LDL induced the proliferation of cultured
human mesangial cells and enhanced the
production of IL-6, PDGF-AB and TGF-β while
tumour necrosis factor α (TNF-α) secretion was
stimulated by oxidized LDL [187]. The mechanisms
involved in cell proliferation induced by accu-
mulation of LDL and its oxidized forms include
activation of membrane receptors of the Ras and
mitogen-activated protein (MAP) kinase signaling
cascades leading to increased DNA synthesis [188].

DDyysslliippiiddeemmiiaa  aanndd  eennddootthheelliiuumm--ddeerriivveedd  
vvaassooddiillaattoorrss//ggrroowwtthh  iinnhhiibbiittoorrss

Increased LDL cholesterol is associated with
impaired NO-mediated vasodilation. Available data
suggest that reduced NO availability in dyslipidemia
is due to increased degradation of NO rather than
decreased production. Inhibition of endothelial
relaxation induced by oxidized LDL cholesterol may
be due to the formation of lysophosphatidylcholine
(lyso-PC), derived from the oxidation of LDL [189].

DDyysslliippiiddeemmiiaa  aanndd  mmaaccrroopphhaaggee  iinnffiillttrraattiioonn  
aanndd  aaccttiivvaattiioonn

A number of studies have demonstrated an
important role for macrophages in the development
of glomerular injury. The mechanisms whereby
dyslipidemia facilitates monocyte recruitment to
the glomeruli are incompletely understood but may
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involve the increased production of chemokynes and
upregulation of adhesion molecules. Lovastatin
reduces expression and production of monocyte
chemoattractant protein-1 (MCP-1) and macro-
phage-colony stimulating factor (M-CSF) in cultured
mesangial cells [190]. Hattori et al. [191]
demonstrated an infiltration of macrophages-derived
foam cells in almost all the glomeruli in rats fed
a high cholesterol diet. Many of these cells
expressed of lymphocyte function-associated
antigen-1 (LFA-1) and very late antigen-4 (VLA-4),
which are ligands for intercellular adhesion mole-
cule-1 (ICAM-1) and vascular adhesion molecule-1
(VCAM-1). Coincident with the induction
of hypercholesterolemia, a marked up-regulation
of Mo colony-stimulating factor (M-CSF) and Mo
migration inhibitory factor (MIF) mRNA was
expressed by glomerular mesangial cells and
podocytes. These authors [191] concluded that
hypercholesterolemia can induce a classic proinflam-
matory response which results in macrophage
recruitment and glomerular injury. Consistent with
these investigations, the ApoE null mice, a model
of hypercholesterolemia, fed with a high cholesterol
diet, develope mesangial expansion in association
with a glomerular inflammatory response
characterized by the presence of foam cells,

macrophage recruitment, and endothelial-cell
activation [192]. These findings were not aggravated
after subtotal nephrectomy and were therefore
independent of renal mass reduction [193].

In summary, the presence of ox-LDL in
the glomeruli may recruit circulating monocytes,
leading to the accumulation of macrophages in
the glomeruli. Activated macrophages secrete
cytokines, growth factors, vasoactive substantances,
coagulation factors, reactive oxygen species, and
proteolytic enzymes, leading to glomerulosclerosis
by augmenting mesangial cell proliferation. In
addition, macrophages have a large number
of scavenger receptors and accumulate oxidazied LDL
within cells, resulting in foam cell formation. When
these cells die, the release of cytotoxic components
could cause a loss of glomerular cells and lead to an
eventual sclerosis of the glomeruli, as proposed in
atherogenesis (Figure 2) [181-193].

DDyysslliippiiddeemmiiaa  iinndduucceedd  bbyy  rreennaall  ddiisseeaassee

UUpprreegguullaattiioonn  ooff 33--hhyyddrrooxxyy--33--mmeetthhyyllgglluuttaarryyll
CCooAA  rreedduuccttaassee

The nephrotic syndrome is associated with
multiple derangements in lipid metabolism. Vaziri
et al. [194, 195] have demonstrated a marked

FFiigguurree 22..  Lipid-induced chronic kidney disease
The presence of oxidized lipids in the glomeruli results in glomerular sclerosis by the interplay of macrophage activation,
mesangial cell proliferation and an imbalance of the vasoconstriction/vasodilatation mechanisms
NO – nitric oxide, Liso-PC – lysophosphatidylcholine, ROS – reactive oxygen species, MCP1 – macrophage chemotatic
factor 1, MCSF – macrophage-colony stimulating factor, ICAM-1 – intercellular adhesion molecule-1, VCAM-1 – vascular
adhesion molecule-1, Ras – Ras proteins, MAP – mitogen-activated protein, IL-6 – interleukin-6, PDGF-AB
– platelet-derived growth factor-AB, TNF-α – tumor necrosis factor α, TGF-β – transforming growth factor β

Dyslipidemia

Oxidized lipids

↓ Endothelial relaxation

Glomerular sclerosis 
and interstitial fibrosis

Macrophage activation 
and foam cell formation

Mesangial cell proliferation 
and matrix overproduction

↑↑ LLiissoo--PPCC
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↑ ROS
↑ MCP-1
↑ MCSF
↑ VCAM-1
↑ ICAM-1
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↑ PFGF-AB
↑ TNF-α
↑ TGF-β
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upregulation of 3-hydroxy-3-methyl-glutaryl CoA
reductase (HMG-CoA reductase) and a relative
reduction of hepatic cholesterol 7 α-hydro-xylase
(Ch 7 α-hydroxylase). These alterations are
accompanied by LDL receptor deficiency, and
up-regulation of hepatic ACAT-2. These molecular
disregulations are responsible for the induction and
maintenance of hypercholesterolemia, impaired LDL
clearance and cholesterol enrichment of VLDL and
newly synthesized LDL particles in patients with
the nephrotic syndrome [194, 195].

LLeecciittiinn--cchhoolleesstteerrooll  aacceettyyllttrraannssffeerraassee  ddeeffiicciieennccyy

Lecitin-cholesterol acetyltransferase is a glyco-
protein enzyme that is synthesized by the liver and
secreted in plasma where it catalyzes the removal
of the fatty acyl group from the sn-2 position
of lecithin and its transfer to free cholesterol to
form cholesteryl ester. Inherited LCAT deficiency is
associated with a marked reduction in HDL-me-
diated reverse cholesterol transport, a depressed
ratio of cholesterol-rich HDL2 to cholesterol-poor
HDL3, the presence of cholesterol laden foam cells
in various tissues, accelerated cardiovascular
disease, corneal opacification, and progressive renal
disease [196].

The animal model of LCAT deficiency (LCAT-KO
mice) develops a clinical phenotype similar to
humans. In addition to severe alpha-lipoproteinemia,
LCAT-KO mice present with normochromic
normocytic anemia and glomeruloscerosis. The
findings indicate that the induction of lipo-
protein X (LPx) by a high fat-high cholesterol diet is
associated with the development of glome-
rulosclerosis in these mice [197]. In the nephrotic
syndrome, hyperlipidemia is marked by elevations
of plasma LDL, VLDL, IDL, and lipoprotein (a) [194].
Although HDL levels are generally normal,
the maturation of HDL3 to HDL2 is impaired, due to
acquired LCAT deficiency secondary to abnormal
urinary losses of this enzyme [198].

DDoowwnnrreegguullaattiioonn  ooff lliippoopprrootteeiinn  lliippaassee  
aaccttiivviittyy

Lipoprotein lipase (LPL) is the rate-limiting step
in lipolysis of VLDL and chylomicrons. The down
regulation of LPL activity results in their impaired
clearance and is responsible for the elevation
of serum triglyceride concentration. The studies
of Liang and Vaziri [199] in nephrotic rats have
demonstrated marked downregulation of LPL in
skeletal muscle, myocardium, and adipose tissue,
the principal sites of consumption of fatty acids.
The reduction in LPL activity plays a role in
the pathogenesis of hyperlipidemia and thereby in
the increased risk of progression of kidney and
cardiovascular disease.

TThhee  ssttaattiinnss  rroollee  iinn  tthhee pprrooggrreessssiioonn  ooff cchhrroonniicc  
kkiiddnneeyy  ddiisseeaassee

LLiippiidd--lloowweerriinngg  aanndd  aannttii--iinniiffllaammmmaattoorryy  eeffffeeccttss  

Statins, due to their hypolipidemic effect are
useful in correcting the dislipidemia of patients with
CKD and reducing cardiovascular events in this
population. In addition, several studies have
suggested that the HMG-CoA reductase inhibition,
may have additional effects on the biology
of inflammation involved in the progression
of kidney disease. It is now widely accepted that
HMG-CoA reductase blockade not only inhibits
the synthesis of cholesterol but also the mavelonate
pathways and the synthesis of isoprenoids, such
as farnesyl pyrophosphate (FPP) and geranyl
geranyl pyrophosphate (GGPP). Isoprenoids are
essential for the posttranslational modification
of several proteins involved in important signaling
pathways [200, 201].

Statins may exert their protective effects on
renal disease progression through a variety
of immunomodulatory effects, down regulation
of proinflammatory and profibrotic cytokines and
antiproliferative effects on smooth muscle cells and
mesangial cells. Immunomodulatory effects are
exerted through modification of multiple
proinflammatory transcription factors, such as
NFκB, signal transducer of transcription 1 (STAT-1),
hypoxia-infucible factor (HIF), peroxisome proli-
ferators-activated receptors α (PPAR-α), and
kruppel-like factor 2 (KLF2) [202]. In rats with
subtotal nephrectomy, atorvastatin appears to
confer nephroprotection as a result of down
regulation of prosclerotic cytokines such as TGF-β1
and reduced macrophage accumulation [203].
Treatment with lovastatin in diabetic rats inhibited
TGF-β1 mRNA expression in diabetic rat glomeruli
and cultured rat mesangial cells despite high
glucose levels. These changes were nearly
completely restored by mevalonate [204].

The statins could affect the smooth muscle cells
proliferation through inhibition of the isoprenylation
of small GTP binding proteins Rho or Rac. Through
modification of these two proteins, statins have
been shown to inhibit VSMC proliferation by
arresting the cell cycle between the G1/S phase
transition [202]. In addition, inhibition of protein
prenylation by statins may play a role in VSMC
apoptosis, providing another mechanism by which
HMG-CoA reductase inhibitors may modify
the pathophysiology of vascular sclerosis [205].

Many glomerular diseases are characterized by
mesangial cell proliferation and accumulation
of mesangial extracellular matrix. Treatment with
lovastatin reduced mesangial cellularity in obese
Zucker rats, Dahl salt-sensitve rats and rats with
subtotal nephrectomy [206, 207]. Initially, these
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effects were attributed to the lipid-lowering effect
of lovastatin; subsequently, it was demonstrated
that lovastatin prevents cell proliferation via
a dose-dependent reduction of DNA synthesis. This
effect was largely abrogated by mevolonate and
isoprenoid farnesol [208]. Simvastatin suppressed
cell mesangial proliferation and subsequent matrix
expansion, and glomerular macrophage infiltration
in the Thy-1 rat model of glomerulonephritis. The
effect of simvastatin was also associated with
the reduction of the cyclin dependent kinase 2
(CDK2) in mesangial cells [209], an enzyme
regulates cell proliferation [210]. Lovastatin can also
decrease PDGF-induced mesangial cell DNA
synthesis and cell membrane Ras incorporation,
a mechanism involved in the pathogenesis of
proliferative glomerular disease [211].

In cultured mesangial cells, pravastatin inhibits
inflammatory mediators, macrophage infiltration,
and suppresses mesangial cell proliferation, TGF-β1
expression, and extracellular matrix production
(fibronectin and type IV collagen) [212] and
type IV collagen production, DNA synthesis and G1
to S phase progression [213]. In a rat model of chronic
cyclosporine-induced nephropathy, pravastatin
induced dose-dependent decreases in the expression
of osteopontin and intrarenal C-reactive protein,
of fibrotic cytokine-TGF-β1 and in the numbers
of infiltrating macrophages. In addition, Pravastatin
also upregulated the endothelial nitric oxide synthase
(eNOS). These changes were accompanied by
a significant attenuation of tubulointerstitial
inflammation and fibrosis [212]. In salt-loaded Dahl
salt-sensitive rats, pravastatin ameliorated the renal
oxidative stress, and retarded the progression
of kidney injury [214].

HMG-CoA reductase inhibition can prevent
interstitial fibrosis. In an experiment where proximal
tubules isolated from rats were treated previously
with lovastatin, it was observed an increase
of tissue-type plasminogen activator (tPA) and
urokinase (uPA) activities. These effects were also
observed when proximal tubules from untreated
rats were incubated with lovastatin. In vitro,
supernatants, cytosols, and membranes of proximal
tubular cells showed the same effects when
exposed to lovastatin. These effects were reversed
by mevalonate and GGPP but not by FPP. The effect
of lovastatin was associated with a disruption
of cellular actin stress fibers, which was reversed
by GGPP. The resulting increase of proteolytic
activity of tubular cells may downregulate
extracellular matrix deposition [215]. Similar results
have been reported with the use of rosuvastatin
[216].

Another mechanism whereby statins could
prevent interstitial fibrosis is by reducing 
protein tubular absorption and decreasing

intraparenchymal protein trafficking. Renal proximal
tubule cells are responsible for the reabsorption
of proteins that are present in the tubular lumen
by a process that involves receptor-mediated
endocytosis. Statins inhibited the uptake of albumin
by the proximal tubule-derived opossum kidney cell
line and the reduction in albumin uptake was
related to the degree of inhibition of HMG-CoA
reductase [217]. The effect on albumin endocytosis
was prevented by mevalonate and by the iso-
prenoid GGPP, indicating that the inhibitory effect
may be caused by reduced prenylation and thereby
decreased function of GTP-binding proteins required
for this process [217, 218]. This mechanism could
also be involved in the proteinuria observed in
patients treated with a high dose statins [219].

In summary, a wide range of effects have been
reported with statins, including antinflammatory
and immunomodulatory effects, mesangial cell
proliferation and reduction of albumin uptake by
the proximal tubule cells. They all are independent
of their lipid-lowering effect, and they could
represent additional mechanisms for the reno-
protective effects of statins.

CClliinniiccaall  eevviiddeenncceess

Results from several small clinical studies initially
suggested that statins might slow the progres-
sion of kidney disease [220]. Subsequently,
the sub-analyses of large randomized trials have
reported that statins may slow renal function loss in
CKD. In a post hoc analysis from the Cholesterol and
Recurrent Events (CARE) trial, a randomized study
of pravastatin vs. placebo, data from a subset
of participants with moderate chronic renal disease
(estimated GFR < 60 ml/min/1.73 m2) was analyzed.
In this subgroup of patients, the rate of GFR decline
the pravastatin-treated patients was slower than in
those treated with placebo. This effect was more
pronounced in individuals with proteinuria at
the baseline [221]. However, the same authors
reported in a subsequent meta-analysis that a modest
reduction in proteinuria and a small reduction
of the kidney functional loss, was found mostly in
individuals with cardiovascular diseases [222].

In a subgroup analysis of the Greek atorvastatin
and coronary heart disease evaluation study
(GREACE), the effects of statins vs. untreated
dyslipidemia was evaluated. In untreated dyslipidemic
patients with coronary heart disease (CHD) and
normal renal function at baseline, renal function
declined over a period of three years. Statins
treatment prevented this decline and significantly
improved renal function [223]. The subanalysis
of the Treating to New Targets (TNT) study
compared 80 mg of atorvastatin with 10 mg
of the drug in the renal function of patients with CHD.
At the end of a mean of 59.5 months of follow-up,
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the expected decline in renal function was not
observed and GFR improvement was significantly
greater with the higher dose (224). The renoprotective
effect of statins may be enhanced when combined
with ACEi inhibitors or ARB treatment. In
a prospective, controlled, open-label study, treatment
with atorvastatin added to a regimen with ACEi
inhibitors or ARB, reduced significantly the rate
of progression of kidney disease and proteinuria in
patients with CKD [225]. Similar findings have been
reported in experimental nephropathy [226].

In contrast, other studies have not confirmed
that statins retard the progression of CKD. In a post
hoc subanalysis of the Antihypertensive and
lipid-lowering treatment to prevent heart attack
trial (ALLHAT), pravastatin was not superior to usual
care in preventing clinical renal outcomes in
hypertensive patients with moderate dyslipidemia
and decreased GFR [227]. It has been argued that
the negative results of this analysis might be due
to the unique design of this trial [228].

In conclusion, there are potential mechanistic
explanations to justify the use of statins to slow
the loss or renal function and proteinuria in patients
with CKD. However, the available clinical data is
inconclusive to determine if statins retard
the progression of kidney disease. Most of
the studies come from a post hoc analysis of large
clinical trials not intended to evaluate primarily
the effect of statins on kidney function.

Therefore, at the present time the decision to
use statins in the context of slowing kidney disease
progression is left to the physician judgment.
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